Design and Characterization of a High Resolution Microfluidic Heat Flux Sensor with Thermal Modulation
نویسندگان
چکیده
A complementary metal-oxide semiconductor-compatible process was used in the design and fabrication of a suspended membrane microfluidic heat flux sensor with a thermopile for the purpose of measuring the heat flow rate. The combination of a thirty-junction gold and nickel thermoelectric sensor with an ultralow noise preamplifier, a low pass filter, and a lock-in amplifier can yield a resolution 20 nW with a sensitivity of 461 V/W. The thermal modulation method is used to eliminate low-frequency noise from the sensor output, and various amounts of fluidic heat were applied to the sensor to investigate its suitability for microfluidic applications. For sensor design and analysis of signal output, a method of modeling and simulating electro-thermal behavior in a microfluidic heat flux sensor with an integrated electronic circuit is presented and validated. The electro-thermal domain model was constructed by using system dynamics, particularly the bond graph. The electro-thermal domain system model in which the thermal and the electrical domains are coupled expresses the heat generation of samples and converts thermal input to electrical output. The proposed electro-thermal domain system model is in good agreement with the measured output voltage response in both the transient and the steady state.
منابع مشابه
Fiber - Optic Sensing of Linear Thermal Expansion (RESEARCH NOTES)
The use of a LED fiber-optic sensor to measure displacement and linear thermal expansion is described. It has a sensitivity of about 0.6 mV/mm, a resolution of 1.25 mm, and a dynamic rang of 400 mm for displacement measurements. For thermal expansion, it shows a sensitivity of about 3.5 mV/C, and the experimental linear expansion values are in agreement with those calculated. The reported senso...
متن کاملGeothermal area detection using Landsat 8 operational land imager and thermal infrared sensor data in Ardabil province, Iran
GIS and remote sensing technique with using Landsat 8 images data are very important methods for detection of geothermal resources. In this study, Land Surface Temperature (LST) for Ardabil province in northwest of Iran, was derived with the use of Landsat 8 Operational Land Imager (OLI) of 30 m spatial resolution and Thermal Infrared Sensor (TIRS) data of 100 m spatial resolution. We consider ...
متن کاملDesign, Calibration, and Implementation of a High Temperature Heat Flux Sensor for Hypersonic Flight Research
Recent advances in heat flux measurement have produced a robust thermopile heat flux sensor intended for use in hypersonic flight research. The High Temperature Heat Flux Sensor (HTHFS) is capable of operation at sensor temperatures up to 1050°C with simultaneous measurement of thermopile surface temperature and heat flux. Customization of the sensor design allows implementation in a broad rang...
متن کاملSynthesis and characterization of high flux and antibacterial film nanocomposite based on epoxy-zeolite NaA
A high flux thin-film nanocomposite membrane epoxy/ zeolite NaA nanocomposite films prepared by using ultrasonic mixing and spin coating. The synthesized nanocomposites film was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravity analysis (TGA), and FTIR spectroscopy. Water softener and water flux characteristics of the epoxy/ zeolite NaA nanocomposite ...
متن کاملThermal Analysis of Sintered Silver Nanoparticles Film
Thin bonded films have many applications in antireflection and reflection coating, insulating and conducting films and semiconductor industries. Thermal conductivity is one of the most important parameter for power packaging since the thermal resistance of the interconnections is directly related to the heat removal capability and thermal management of the power package. The defects in material...
متن کامل